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On a free boundary value problem for the
anisotropic N-Laplace operator on an

N−dimensional ring domain

A. E. Nicolescu and S. Vlase

Abstract

In this paper we are going to investigate a free boundary value prob-
lem for the anisotropic N -Laplace operator on a ring domain Ω :=
Ω0 \ Ω1 ⊂ RN , N ≥ 2. Our aim is to show that if the problem ad-
mits a solution in a suitable weak sense, then the underlying domain Ω
is a Wulff shaped ring. The proof makes use of a maximum principle
for an appropriate P-function, in the sense of L.E. Payne and some ge-
ometric arguments involving the anisotropic mean curvature of the free
boundary.

1 Introduction

Let F : RN → [0,∞), N ≥ 2, be a norm in RN , such that

F ∈ C3,α
loc

(
RN \ {0}

)
, with α ∈ (0, 1) ,

Hess
(
FN
)

is positive definite in RN \ {0} .
(1.1)

In this paper, we are mainly concerned with the physical motivation of study-
ing a certain condenser capacity in an anisotropic environment. More exactly,
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we are dealing with the following free boundary problem:
Qu :=

∑N
i=1

∂

∂xi

(
FN−1(∇u)Fξi(∇u)

)
= 0 in Ω := Ω0 \ Ω1 ⊂ RN ,

u = 0, F (∇u) = c0 on ∂Ω0,

u = 1, F (∇u) = c1 on ∂Ω1.

(1.2)
Here Ω0 and Ω1 are bounded domains of RN having boundaries of class C2,
such that Ω0 ⊃ Ω1, while c1 > c0 > 0 are some real constants. Furthermore,
we also assume that Ω0 and Ω1 are star shaped with respect to the origin,
which is supposed to lie inside Ω1. By ν = (ν1, · · · , νN ) we denote the outer
normal to ∂Ω.

We note that similar problems have been investigated by E. Sartori in [24]
and by L. E. Philippin [23] in the case F (ξ) = |ξ| (when Q is the p -Laplace
operator, 1 < p < N), and Laplace operator, respectively. In such cases,
problem (1.2) has a weak solution if and only if Ω0 and Ω1 are concentric
spheres. In our paper, the usual euclidian norm of the gradient is replaced
with an arbitrary norm F, satisfying assumption (1.1). The same problem
for the case of the anisotropic p -Laplace operator, 1 < p < N, has already
been investigated by L. Barbu-C. Enache in [2], thus the main result of this
paper (Theorem 1.1) looks somehow complementary. Studying this class of
anisotropic equations could have numerous applications in physics, ranging
from some well-established models of surface energies in metallurgy, crystal-
lography, and crystalline fracture theory, to noise-removal procedures in digital
image processing (see [3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 26] and references therein).

We will say that u ∈W 1,N (Ω) is a weak solution of (1.2) if∫
Ω

FN−1(∇u)Fξi(∇u)vi dx = 0 for any v ∈ C∞0 (Ω), (1.3)

and u(x) satisfies the boundary conditions (1.2)2,3. Regarding the regularity
of a solution to problem (1.2), we first note that a solution of the variational
problem

Min
v∈K

∫
Ω

FN (∇v) dx, (1.4)

where K is the following set of admissible function

K =
{
v ∈W 1,N

0 (Ω0) : v ≡ 1 in Ω1

}
, (1.5)

satisfies
Qu = 0 in Ω, u = 0 on ∂Ω0, u = 1 on ∂Ω1. (1.6)
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Therefore, we can try to find a solution u(x) of equation (1.2)1 which verifies
the first equalities in (1.2)2,3, by searching for solutions to variational problem
(1.4). According to the regularity theory for quasiminima, the minimizers in
(1.5) are bounded, Hölder continuous and satisfy the strong maximum prin-
ciple (see the book of E. Giusti [13], Theorems 7.5, 7.6 and 7.12). We thus
have:

0 < u < 1 in Ω. (1.7)

Also, since Hess
(
FN
)

is positive definitive in RN \{0}, the functional that we
minimize in (1.4) is strictly convex, so that the solution u (x) is in fact unique.
Moreover, since ∂Ω ∈ C2, according to G.M. Lieberman [19], P. Tolksdorf [27],
we have u ∈ C1,α

(
Ω
)
. Hence boundary conditions (1.2)2,3 are well defined.

Also, since F verifies assumptions (1.1), equation (1.2)1 is uniformly elliptic in
Ω \ C, where C := {x ∈ Ω; ∇u(x) = 0}. Then, the classical regularity theory
implies that a weak solution u ∈ W 1,N (Ω) to equation (1.2) is of class C3,α

on Ω \ C (see O.A. Ladyzhenskaya-N.N. Uraltseva [18]), so that the partial
derivatives of u (x), up to third order, are well defined on Ω \ C.

Next, let F ∗ be the dual norm of F that is

F ∗(x) = sup
ξ 6=0

〈x, ξ〉
F (ξ)

∀ x ∈ RN ,

also called the polar of F. For r > 0, we define

WF (r) := {x ∈ RN : F ∗(x) < r}, WF∗(r) := {x ∈ RN : F (x) < r}.

In general, for r > 0, we say that WF (r) is the Wulff shape (or equilibrium
crystal shape) of F, of radius r and center 0. A set D ⊂ RN is a Wulff shape of
F if there exist r > 0 such that D = {x ∈ RN : F ◦(x) < r}. Further details
about Wulff shapes may be found in V. Ferone-B. Kawohl [12], A. Cianchi-P.
Salani [8].

The main result of this paper states the following:

Theorem 1.1. If problem (1.2) has a weak solution u(x), then ∂Ω1 and ∂Ω0

are concentric Wulff shapes, up to translations, whose radii are given by

ri =
(
ci(ln c1 − ln c0)

)−1

, i = 0, 1. (1.8)

Moreover, if F ∗ ∈ C1(RN \ {0}, then the solution u(x) is given explicitly by
the following formula

u(x) =
(

(ln r0 − ln r1)−1(ln r0 − lnF ∗(x))
)

for any x ∈ Ω. (1.9)
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The outline of the paper is as follows. In Section 2 we will prove a maximum
principle for an appropriate P -function in the sense of L. E. Payne (see the
book of R. Sperb [25]), while in Section 3 this maximum principle will be
employed to prove Theorem 1.1.

For convenience, notice that throughout this paper the comma is used
to indicate differentiation and the summation from 1 to N is understood on
repeated indices. Moreover, we adopt the following notations:

F := F (∇u), Fi := Fξi =
∂F

∂ξi
, Fξ = (F1, ..., FN ) ,

aij(∇u) :=
∂2

∂ξi∂ξj

(
1

p
F p(∇u)

)
= FN−1Fij + (N − 1)FN−2FiFj ,

(1.10)

where i, j ∈ {1, ..., N} .

2 A maximum principle for an appropriate P -function

In order to prove Theorem 1.1, let us consider the following P-function

P (u;x) :=
N − 1

N
FN (∇u(x))e−αu(x), x ∈ Ω, (2.1)

where u(x) is a weak solution to equation (1.2)1, and α is a positive constant
chosen to satisfy P|∂Ω0

= P|∂Ω1
. More precisely, α is given by

α := N(ln c1 − ln c0). (2.2)

The proof of Theorem 1.1 is presented as a sequence of lemmas. To begin
with, we have the following maximum principle:

Lemma 2.1. Assume that u(x) is a weak solution to problem (1.2)1. Then
the auxiliary function P , defined by (2.1)− (2.2), is either identically constant
on Ω, or it has no interior point of maximum and it satisfies Pν > 0 on
∂Ω = ∂Ω0 ∪ ∂Ω1.

Here, ν is the exterior unit normal to ∂Ω, while Pν is the normal derivative
of P .

Proof. For the proof of the above maximum principle, the following lemma
will play an important role in our computations.
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Lemma 2.2. Assume that u(x) is a weak solution to equation (1.2)1. Let aij
be the coefficients defined by (1.10)2. Then the following inequality holds

aijakluikujl ≥
(aijuij)

2

N
+

N

N − 1

[aijuij
N

− (N − 1)FN−2FiFjuij

]2
on Ω\C.

(2.3)

For the proof of Lemma 2.2, we refer the reader to L. Barbu-C. Enache [2],
Lemma 2.2.
The proof of Lemma 2.1 is mainly based on the construction of an elliptic
differential inequality for the P (u; ·)−function defined in (2.1) − (2.2) (for
computations of this kind see also [1] and [2]).

Since F is positive homogeneous of degree 1, we also have (see G. Wang-C.
Xia [28], Proposition 2.1)

Fiui = F, Fijuj = 0, Fijkui = −Fjk for any i ∈ {1, ..., N} .
(2.4)

The following computations are all considered in Ω \ C. We have

Pi = e−αu(N − 1)
(
FN−1Fkuki −

α

N
FNui

)
, (2.5)

Pij = (N − 1)e−αu
(

(N − 1)FN−2FlFkukiulj + FN−1Fkluljuki

+FN−1Fkukij − αFN−1Fkukiuj

−αFN−1Fkukjui + α2

N F
Nuiuj − α

N F
Nuij

)
.

(2.6)

Next, making use of notation (1.10)2, we can rewrite (1.2)1 as follows

aijuij =
(
FN−1Fij + (N − 1)FN−2FiFj

)
uij = 0. (2.7)

Now, making use of (2.4), (2.6), (1.10)2, after some simplifications, we obtain

aijPij = (N − 1)e−αu
(

(2N − 2)F 2N−3FlFkFijukiulj

+(N − 1)2F 2N−4FlFkFiFjukiulj

+F 2N−2FijFkluljuki + FN−1Fkaijukij

−2α(N − 1)F 2N−2FkFiuik + α2N−1
N F 2N

)
.

(2.8)

On the other hand, from (2.4)1 and (2.5) one may easily derive the following
identities

Fkuki =
Pie

αu

(N − 1)FN−1
+
α

N
Fui (2.9)
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FiFkuki =
α

N
F 2 + terms containing Pm. (2.10)

In addition, making use of (2.10) in (2.7), we obtain

Fijuij = −α(N − 1)

N
F + terms containing Pm. (2.11)

Differentiating (2.7), we also have

0 = 2(N − 1)FN−2FilFjulkuij + (N − 1)FN−2FlFijulkuij

+FN−1Fijlulkuij + (N − 1)(N − 2)FN−3FiFlFjulkuij + aijuijk.
(2.12)

Inserting now aijuijk from (2.12) in (2.8), after some simplifications, we derive

aijPij = (N − 1)e−αu
(

(N − 1)F 2N−4FlFkFiFjukiulj + F 2N−2FijFkluljuki

−2α(N − 1)F 2N−3FkFiFjuikuj + α2(N−1)
N F 2N

−(N − 1)F 2N−3FkFlFijulkuij − F 2N−2FkFijlulkuij

)
.

(2.13)
Moreover, using (2.9)− (2.11) in (2.13), after some computations, we get

aijPij = (N − 1)e−αu
(
F 2N−2FijFkluljuki − N−1

N2 α
2F 2N

)
+ terms containing Pm.

(2.14)

Next, making use of (1.10)2, (2.9), (2.10), we evaluate separately the term
F 2N−2FijFkluljuki, as follows:

F 2N−2FijFkluljuki =
(
aij − (N − 1)FN−2FiFj

)
×
(
akl − (N − 1)FN−2FkFl

)
uljuki

= aijakluljuki + (N − 1)2F 2N−4

(
α
F 2

N
+ terms containing Pm

)2

−2(N − 1)F 2N−4
(
FFkl + (N − 1)FkFl

)
×
(
αFul
N

+ terms containing Pm

)(
αFuk
N

+ terms containing Pm

)
= aijakluljuki − α2 (N−1)2

N2 F 2N + terms containing Pm.
(2.15)
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Inserting now (2.15) into (2.14), we obtain

aijPij = (N − 1)e−αu
(
aijakluljuki − α2F 2N N − 1

N
+ terms containing Pm

)
.

(2.16)
Next, to evaluate the term aijakluljuki in (2.16), we make use of Lemma 2.2,
(2.7) and (2.10). We thus obtain

aijakluljuki ≥
N

N − 1

(
(N − 1)FN−2FiFjuij

)2

≥ N

N − 1

(
− αFN N − 1

N
+ terms containing Pm

)2

= α2F 2N N − 1

N
+ terms containing Pm .

(2.17)

Therefore, using inequality (2.17) into (2.16), we obtain

aijPij + terms containing Pm ≥ 0 in Ω \ C. (2.18)

Finally, Hopf’s first maximum principle (see [16], [25]) implies that P takes its
maximum maximum value either on ∂Ω or at a critical point of u(x). However,
P cannot take its maximum at a point where ∇u = 0, since in such a case
we would have P ≡ 0 on Ω, so u ≡ const. on Ω, which is obviously false.
Consequently, either P is identically constant or it attains its maximum over
Ω only on ∂Ω, where we then have Pν > 0, due to Hopf’s second maximum
principle (see [17], [25]).

The proof of Lemma 2.1 is thus achieved.

3 The proof of Theorem 1.1

We are going to prove first that if u(x) is a weak solution to problem (1.2),
then the auxiliary function P , defined by (2.1)-(2.2), is identically constant on
Ω. To this end, we will make use of the following two important lemmas.

Next lemma states some properties satisfied by the anisotropic mean cur-
vature of the free boundary.

Lemma 3.1. If problem (1.2) admits a weak solution u(x), then the F− mean
curvature HF of ∂Ω satisfies either

H1F > α
(N − 1)c1

N
on ∂Ω1 and H0F < α

(N − 1)c0
N

on ∂Ω0, (3.1)

or

H1F = α
(N − 1)c1

N
on ∂Ω1 and H0F = α

(N − 1)c0
N

on ∂Ω0, (3.2)
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where HiF := HF |∂Ωi
, i = 0, 1.

Proof. Since ci 6= 0, i = 0, 1, equation (1.2)1 is nondegenerate in a neighbour-
hood of ∂Ω, so it may be rewritten pointwise on ∂Ω as (see G. Wang-C. Xia
[28], Theorem 3.1):

0 = Qu = (N − 1)FiFjuij − FHF on ∂Ω. (3.3)

Therefore, we have

H0F =
N − 1

c0
FiFjuij on ∂Ω0, H1F =

N − 1

c1
FiFjuij on ∂Ω1. (3.4)

Consider now the P− function defined in (2.1) with α as in (2.2). According
to Lemma 2.1, two cases may occur. Let us first consider the case when P
is not identical constant, so that we have Pν > 0 on ∂Ω. Since νF = Fξ ◦ ν,
and 〈νF , ν〉 = F ◦ ν > 0 on ∂Ω, νF must point outward. From the Dirichlet
boundary conditions (1.2)2,3 , ν = − ∇u|∇u| on ∂Ω0 and ν = ∇u

|∇u| on ∂Ω1, thus

νF = −Fξ(∇u) on ∂Ω0 and νF = Fξ(∇u) on ∂Ω1, therefore

∂P

∂νF
:= 〈∇P,−Fξ(∇u)〉 > 0 on ∂Ω0,

∂P

∂νF
:= 〈∇P, Fξ(∇u)〉 > 0 on ∂Ω1.

(3.5)
Clearly, the above inequalities yield

−αF 2 +NFiFjuij > 0 on ∂Ω1, αF 2 −NFiFjuij > 0 on ∂Ω0, (3.6)

where we have used (2.4)1. By combining (3.4) and (3.6) we obtain (3.1). The
other case of Lemma 2.1, when P is identically constant on Ω, obviously leads
to (3.2). The proof is thus achieved.

Finally, we have

Lemma 3.2. A necessary condition for the existence of a solution u(x) of
problem (1.2) is

cN0 | Ω0 |= cN1 | Ω1 | . (3.7)
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Proof. Assume first that u ∈ C2(Ω). By divergence theorem we derive∫
∂Ω

FN (∇u)〈x, ν〉 dσ =

∫
Ω

div (F p(∇u)x) dx

=

∫
Ω

(
NFN (∇u) + xi

(
F p(∇u)

)
i

)
dx = N

∫
Ω

FN (∇u) dx

+N

∫
Ω

(
xi
(
FN−1(∇u)Fk(∇u)ui

)
k
− xiui

(
FN−1(∇u)Fk(∇u)

)
k

)
dx

= N

∫
Ω

FN (∇u) dx +N

∫
∂Ω

〈x,∇u〉FN−1(∇u)Fk(∇u)νkd σ

−N
∫

Ω

F (∇u)Fk(∇u)uk dx−N
∫

Ω

〈x,∇u〉div (FN−1(∇u)Fξ(∇u)) dx

= N

∫
∂Ω

〈x,∇u〉FN−1(∇u)Fk(∇u)νkd σ.

(3.8)

Since u = Const. on ∂Ω we obtain that ui = ∂u
∂ν νi, therefore∫

∂Ω

〈x,∇u〉FN−1Fkνk dσ =

∫
∂Ω

〈x, ν〉FN dσ. (3.9)

Taking into account (1.2)1 and substituting (3.9) into (3.8) we obtain that∫
∂Ω

〈x, ν〉FN dσ = 0. (3.10)

On the other hand

(−1)i
∫
∂Ωi

〈x, ν〉 dσ = N | Ωi | for i = 0, 1. (3.11)

Using (3.10), (3.11), and (1.2)2,3 we derive equality (3.7).
For a weak solution u(x) to problem (1.2), we can use a result obtained by

M. Degiovanni, A. Musesti and M. Squassina (see [11], Theorem 2) to conclude
that (3.7) holds in fact for u ∈ C1,α(Ω), since F p is strictly convex.

Next, we assume contrariwise that P is not identically constant, so that
inequalities (3.1) hold. We point out that we have the so-called Minkowski
formulas (see, for instance, Y.J. He-H.Li [14], Theorem 1).

(−1)i
∫
∂Ωi

HiF · 〈x, ν〉dσ = (N − 1)

∫
∂Ωi

F ◦ ν dσ for i = 0, 1. (3.12)
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On the other hand, by the divergence theorem applied to (1.3)1 (working on
the approximations and passing to the limit) we have

0 = cN−1
0

∫
∂Ω0

F ◦ ν dσ − cN−1
1

∫
∂Ω1

F ◦ ν dσ. (3.13)

In particular, the starshapedness of Ω0 and Ω1 with respect to the origin tell
us that (−1)i〈x, ν〉 ≥ 0 on ∂Ωi with (−1)i〈x, ν〉 > 0, i = 0, 1, on subsets of
positive (N − 1) measure. Therefore, multiplying inequalities (3.1) by 〈x, ν〉,
integrating over ∂Ω0, and ∂Ω1 and using (3.11), we have

−
∫
∂Ω1

H1F 〈x, ν〉 dσ = (N − 1)

∫
∂Ω1

F ◦ ν dσ > (N − 1)c1α | Ω1 |, (3.14)

∫
∂Ω0

H0F 〈x, ν〉 dσ = (N − 1)

∫
∂Ω0

F ◦ ν dσ < (N − 1)c0α | Ω0 | . (3.15)

Making use of identity (3.13) and inequalities (3.14)-(3.15), we obtain

cN1 | Ω1 |< cN0 | Ω0 |, (3.16)

which contradicts (3.7). Therefore, P is identically constant on Ω and identi-
ties (3.2) hold. Consequently, Ω0 and Ω1 must be Wulff shapes, whose radii
are denoted by r0, r1 (see H.J. He-H.Z. Li-H. Ma-J.Q. Ge [15]).

Next, we are going to prove that the solution u(x) to problem (1.2) is given
by the formula (1.9), where r1 and r2 satisfy (1.8). As we have already men-
tioned in the Introduction, there exists at most one solution u(x) of equation
(1.2)1 which verifies the first equalities in (1.2)2,3. Now, we can easily see that
the level surfaces of u in Ω are Wulff shapes. Indeed, since the function P (u; ·)
is constant in Ω, F (∇u) is constant on level surfaces of u, therefore we can use
the identity obtained in Lemma 3.2 in the set between any level surface and
the boundary of Ω0 or Ω1 and obtain the claim by using a similar reasoning
as above. Therefore, the solution to problem (1.2) is such that all its level
sets are Wulff shapes and such that F (∇u) is constant on level sets, then it
must be of the form u(x) = u(F ∗(x)) := v(r), where r = F ∗(x), decreasing as
function of r. On the other hand, the solution solution u(x) to equation (1.2)1

which verifies the first equalities in (1.2)2,3 can be found by minimizing the
functional (1.4). Using the coarea formula and the particular form of u, we
can see that the solution to problem (1.2) which verifies the first equalities in
(1.2)2,3 also minimize the functional

J(v) =

∫ r1

r0

FN
(
v′(r)∇F ∗(x)

)
rN−1dr =

∫ r1

r0

FN
(
v′(r)

)
rN−1dr,
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where we have used the equality F (∇F ∗(x)) = 1 (see Lemma 3.1, [8]). Now,
the corresponding Euler-Lagrange equation of this one dimensional problem
is the following ordinary differential equation

(rN−1(−v′(r))N−1)′ = 0 on [r1, r0], (3.17)

or equivalently
rv′(r) = k0 on [r1, r0], (3.18)

where k0 is a positive constant. Integrating now (3.18), we get

u(x) = k0

∫ r0

F∗(x)

s−1 ds = k0

(
ln r0 − lnF ∗(x)

)
on Ω. (3.19)

Now, writing (3.19) for F ∗(x) = r1, and making use of the boundary condition
(1.2)3, we obtain that k0 = (ln r0 − ln r1)−1, thus we get that the solution u
is given explicit by the formula (1.9). Next, differentiating (1.9) with respect
to xi, i ∈ {1, · · · , n}, we obtain that

∇u(x) = − ∇F ∗(x)

(ln r0 − ln r1)F ∗(x)
. (3.20)

Finally, in order to derive (1.8) we use the boundary conditions (1.2)2,3, (3.20)
and the identity F (∇F ∗(x)) = 1.

This achieves the proof of Theorem 1.1.
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